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An important question associated with the modelling of a slewing beam is the
discretization of a continuous elastic beam. If discretization is performed by the assumed
mode method, the question arises about the type of admissible functions to be used in series
expansions. In this regard, the eigenfunctions of a non-rotating clamped–free uniform beam
known as cantilever modes have been widely used as admissible functions for the dynamic
analysis of the slewing beam. The discretization will be sufficient provided that the set of
admissible functions is complete and a sufficiently large number of functions is used.
However, there are cases that we need to approximate the model with a small number of
admissible functions. Examples are numerical simulation and control design. In this paper,
new admissible functions which approximate the dynamic characteristics of the slewing
beam more accurately than the eigenfunctions of the non-rotating clamped–free uniform
beam is developed and its efficiency is verified by numerical examples.
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1. INTRODUCTION

A problem of current interest is the dynamic characteristics of a flexible beam undergoing
large slewing motion. In order to describe the motion of the slewing flexible beam, a
suitable reference frame needs to be chosen. In general, the motion of the slewing beam
can be described by the rotation of a given reference frame and the elastic displacement
relative to that frame, where the reference frame is often chosen so as to satisfy the zero
slope at the root. The associated mathematical formulation is in terms of both ordinary
and partial differential equations, resulting in the hybrid equations of motion. Here, the
case in which the beam undergoes small elastic displacements relative to the reference
frame attached to the rotating body axis, and the beam is rotated by the torque applied
at the root of the beam is examined.

A common procedure for analyzing hybrid systems is discretization, whereby the partial
differential equations are replaced by ordinary ones. There are many discretization
procedures in common use, such as the Rayleigh–Ritz method, the finite element method,
etc. The Rayleigh–Ritz method consists of expanding the displacement of a continuous
elastic member in a finite series of known space-dependent functions multiplied by
time-dependent generalized co-ordinates. Since the space-dependent functions used in such
expansions generally represent vibration modes of a closely related system, the
Rayleigh–Ritz method is often referred to as the assumed mode method [1].

The assumed mode method has been used extensively to obtain estimates of natural
frequencies and modes of vibration of distributed-parameter systems including the
gyroscopic system [1, 2]. In particular, Meirovitch [2] proved that stationary property exists
for gyroscopic systems and showed that the system dynamic characteristics are not
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significantly affected by the type of functions used, provided that the set of functions is
complete and a sufficiently large number of functions is used. If discretization is performed
by the assumed mode method in the case of the slewing flexible beam, the admissible
functions to be used in series expansions should be chosen a priori. The eigenfunctions of
the non-rotating clamped–free uniform beam have been widely used as assumed modes
for the dynamic analysis of flexible multibody systems [3] and a slewing beam [4]. Garcia
and Inman [5] studied the effect of servo stiffness on the dynamic analysis of a single-link
flexible beam and concluded that the clamped–free beam assumption for the dynamic
analysis of the slewing beam is a valid assumption if the ratio of the servo stiffness to beam
flexibility is high. Note that the eigenfunctions of the non-rotating clamped–free uniform
beam are in fact comparison functions since they satisfy both geometric and natural
boundary conditions. However, there have been cases where severe truncation is involved.
The modelling accuracy becomes a great concern when simulating the motion of a slewing
beam and designing controls for such a system. In other words, the model obtained by
the assumed mode method should contain minimal error in representing the system with
a small number of admissible functions. This motivated the author to pursue a new set
of admissible functions for the dynamic analysis of the slewing beam.

If the slewing angle and elastic motions are small, the problem can be reduced to the
case of a pinned–free beam based on an inertial frame. In this case, elastic displacements
are expressed in terms of inertial co-ordinates. For instance, a single-link flexible beam
under slewing motion where the pinned-end is actively controlled and the other end is free
can be described either by the pinned–free beam based on inertial frame or the
clamped–free beam based on the rotating body axis, provided that both the rigid-body
motion and the elastic motion are small. This paper is concerned with the discretization
of elastic motion of a beam undergoing large slewing motion. Thus, the rotating body axis
is chosen as a reference frame and the elastic motion is described relative to the body axis.
Although the eigenfunctions of the non-rotating clamped–free beam, so called cantilever
modes, have been widely used as admissible functions for this case, it has been observed
that resulting coefficient matrices are not suitable for numerical simulation and control
design, since those coefficient matrices are stiff in nature. A new set of admissible functions
was thus pursued, which leads to numerically stable coefficient matrices.

The new set of admissible functions were obtained in reference [6] by solving the
linearized hybrid equation of motion for a rotationally accelerated uniform beam.
However, the validity of new admissible functions was not checked for the numerical
computation. In this paper, the discretized equations of motion are presented and the
numercial results by new admissible functions are compared to the results obtained by the
cantilever modes. As a result, accurate natural frequencies and modes are obtained in lower
modes by both assumed modes. However, higher modes suffer in the case of eigenfunctions
of the non-rotating clamped–free uniform beam. Both assumed modes are applied to the
dynamic simulation of the slewing beam. Numerical results show that eigenfunctions of
the non-rotating clamped–free uniform beam suffer in simulating responses of the slewing
beam since it does not realize higher modes. On the other hand, the new admissible
functions developed give stable simulation results.

2. MODELLING OF A SLEWING NON-UNIFORM BEAM

Consider a non-uniform beam moving on a horiziontal surface (Figure 1). The beam
is assumed to be thin compared to its length. The interest lies in deriving equations of
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Figure 1. A slewing beam.

motion. To formulate the problem, the extended Hamilton principle given by

g
t2

t1

(1T+ 1W) dt=0 (1)

is used, where T is the kinetic energy and W is the total work consisting of the conservative
and non-conservative works. To this end, the velocity expression at a nominal point in
the beam needs to be derived. The position vector of a nominal point in the beam with
respect to the inertial co-ordinates can be expressed as

Rp = n̂TCT(j+ u), (2)

where Rp =Rpx I+RpyJ represents the position vector of the point of interest and

n̂=$I
J%, j=$x0%, u=$0v%, C=C(u)=$ cos u

−sin u

sin u

cos u%, (3)

in which n̂ is the unit vector for inertial co-ordinates, and C is the matrix of the direction
cosines between the xy and XY axes. The velocity vector can then be derived by taking
the time-derivative of equation (2):

R� p = n̂T[C� T(j+ u)+CTu̇]= n̂T[−u� DT(j+ u)+CTu̇]= n̂TVp , (4)

where

D=D(u)=$sin u

cos u

−cos u

sin u %. (5)

To obtain the kinetic energy, the velocity squared needs to be computed. Hence, one
obtains

v2
p =R� p · R� p =VT

p Vp

= u� 2(j+ u)T(j+ u)−2u� (j+ u)TDCTu̇+ u̇Tu̇. (6)

Recalling equations (3) and using the relation,

DCT =$01 −1
0 %, (7)
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T 1

bL for uniform beam

Clamped–free Pinned–free

1 1·87510407 3·92660231
2 4·69409113 7·06858275
3 7·85475744 10·21017612
4 10·99554073 13·35176878
5 14·13716839 16·49336143

ie 6 (2i−2)p/2 (4i+2)p/4

equation (6) can be rewritten

v2
p = x2u� 2 + u� 2v2 +2xu� v̇+ v̇2. (8)

Thus, using equation (8), the kinetic energy can be derived

T= 1
2 g

L

0

m̄v2
p dx= 1

2Ju� 2 + 1
2u�

2 g
L

0

m̄v2 dx+ u� g
L

0

m̄v̇2 dx+ 1
2 g

L

0

m̄v̇2 dx, (9)

where L is the length of the beam, m̄ represents the mass per unit length, and J= fL
0 m̄x2 dx

represents the mass moment of inertia with respect to the hinge point.
Potential energy can be expressed as

V=[v, v]= 1
2 g

L

0

EI012v
1x21

2

dx, (10)

and the virtual work is

dW=−dV+ tdu (11)

where t is the torque applied to the hub of the beam.
Inserting equations (9) and (11) into equation (1) and considering that the virtual

displacements, du and dv, are arbitrary and independent, one has

Ju� + u� g
L

0

m̄v2 dx+2u� g
L

0

m̄vv̇ dx+g
L

0

m̄xv̈ dx= t, (12)

m̄(v̈+ xu� − u� 2v)+EI
14v
1x4 =0, 0Q xQL, (13)

and boundary conditions

v(0)=
1v
1x bx=0

=EI
12v
1x2 bx=L

=EI
13v
1x3 bx=L

=0. (14)
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3. EIGENVALUE PROBLEM FOR A SLEWING UNIFORM BEAM

The linearized version of equations (12) and (13) can be written as

Ju� +g
L

0

m̄xv̈ dx= t, (15)

m̄(v̈+ xu� )+EI
14v
1x4 =0, 0Q xQL. (16)

Consider the free vibration of a slewing uniform beam. Using equations (15) and (16), one
can obtain

u� =−
3
L3 g

L

0

xv̈ dx, (17)

m̄v̈ +EI
14v
1x4 =−m̄xu� , 0Q xQL. (18)

Inserting equation (17) into equation (18), one obtains

m̄v̈ +EI
14v
1x4 =

3m̄x
L3 g

L

0

jv̈ dj. (19)

Introducing v(x, t)=V(x) eivt into the above equation yields

EI
d4V
dx4 −v2m̄V =−

v2m̄x
L3 x g

L

0

jV dj. (20)

The solution of equation (20) can be written as

V(x)=A cosh (bx)+B sinh (bx)+C cos (bx)+D sin (bx)+Ex. (21)

Inserting equation (21) into equation (20), one obtains the following relation

E=
3
L3 g

L

0

jV dj, (22)

which yields

A(bL sinh bL−cosh bL+1)+B(bL cosh bL−sinh bL)

+C(bL sin bL+cos bL−1)+D(−bL cos bL+sin bL)=0. (23)

Inserting equation (21) into the boundary conditions, equations (14) result in

A+C=0, (24)

b(B+D)+E=0, (25)

A cosh bL+B sinh bL−C cos bL−D sin bL=0, (26)

A sinh bL+B cosh bL+C sin bL−D cos bL=0. (27)
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Using equation (23) and equations (24–27), the characteristic equation can be obtained

tanh bL=tan bL, (28)

and the mode shape can be expressed as

V(x)= sin bx+
sin bL
sinh bL

sinh bx− b01+
sin bL
sinh bL1x. (29)

It can be readily recognized that equation (28) is in fact the characteristic equation for a
pinned–free beam, and equation (29) consists of the mode shape of a pinned–free beam
and the linear equation whose constant is equal to the minus of the slope of the mode shape
of a pinned–free beam at the root.

It is evident that the problem amounts to the eigenvalue problem of the pinned–free
beam in the inertial frame.

4. SPATIAL DISCRETIZATION

Coupled integro–differential equations (15) and (16) do not permit an exact solution
easily for a non-uniform beam. Thus, an approximate solution should be pursued by
introducing admissible functions. This issue becomes more critical when designing controls
since the control design for the hybrid equation is not feasible. The elastic displacement
is discretized by introducing the admissible functions

v= v(x, t)= s
n

j=1

fj (x)qj (t)=Fq, (30)

Figure 2. Clamped–free natural mode.
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Figure 3. New admissible functions.

where

F=[f1f2 . . . fn ], q=[q1q2 . . . qn ]T, (31)

in which fi and qi (i=1, 2, . . . ) are admissible functions and generalized co-ordinates,
respectively. The admissible functions introduced in the above equation should satisfy at
least the geometric boundary conditions. If equation (30) is inserted into the kinetic energy,
equation (9) results in

T= 1
2Ju� 2 + 1

2u�
2qT + u� F	 q̇ + 1

2q̇TMe q̇, (32)

where

Me =g
L

0

m̄FTF dx, F	 =g
L

0

m̄xF dx, (33)

T 2

The first natural frequency (Hz)

No. of modes Clamped–free mode New admissible function

1 3·854694 2·927607
2 2·930974 2·927560
3 2·928103 2·927343
4 2·927335 2·927314
5 2·927334 2·927301
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T 3

The second natural frequency (Hz)

No. of modes Clamped–free mode New admissible function

2 12·951840 8·762541
3 8·786614 8·762273
4 8·769150 8·760751
5 8·760906 8·760392

and the potential energy can be expressed as

V= 1
2qTKeq, (34)

where

Ke =g
L

0

EI
d2FT

dx2

d2F

dx2 dx. (35)

Thus, the virtual work can be expressed as

1W=−dqTKeq+ tdu. (36)

Inserting equations (32) and (36) into equation (1), and considering that the virtual
displacements, du and dq, are arbitrary and independent, one must have

Ju� + u� qTMeq+2u� qTMe q̇+F	 q� = t, (37)

F	 Tu� +Me q̈+(Ke − u� 2Me )q=0. (38)

A linearized version of the above equations can be written as

Ju� +F	 q̈ = t, (39)

F	 Tu� +Me q̈+Keq=0. (40)

Combining equations (39) and (40), one can write the matrix equations of motion

Mẍ+Kx= bt, (41)

where x=[u qT]T and

M=$ J
F	 T

F	
Me%, K=$00 0

Ke%, b=$10%. (42)

In state form expression, we have

ż=Az+Bt, (43)

where z=[xT ẋT]T and

A=$ 0
−M−1K

I
0%, B=$ 0

M−1b%. (44)
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5. NUMERICAL EXAMPLE

Consider two candidates as an admissible function for a slewing non-uniform beam. The
first one is the eigenfunction of a clamped–free beam:

fcf
i =sin bix−sinh bix−

sin biL+sinh biL
cos biL+cosh biL

(cosh bix−cos bix), i=1, 2, . . . , (45)

and the second one consists of the new admissible functions obtained by equation (29)

fnew
i = si$sin bix+

sin biL
sinh biL

sinh bix− bi01+
sin biL
sinh biL1x%, i=1, 2, . . . , (46)

where

si =
1

2 sin biL− biL(1+ (sin biL/sinh biL))
, i=1, 2, . . . , (47)

in which si is introduced to make the end displacement unity. The biL for each mode shape
is tabulated in Table 1 and its mode shapes are shown in Figures 2 and 3.

As a numerical example, the non-uniform beam which has the following property is
considered.

m̄=1−
5
6 0xL1

3

, EI=1−
5
6 0xL1

3

. (48)

The first and second natural frequencies obtained by each admissible function are
tabulated in Tables 2 and 3. As can be seen from these tables, the convergence in natural

Figure 4. The fourth eigenvector.
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Figure 5. The fifth eigenvector.

frequencies by the new admissible function is faster than the one by the cantilever modes.
The corresponding eigenvectors for the case of five admissible functions are as follows:

2·267787 5·973987 10·450568 14·779259 18·824381 −95·476437

0·000000 −3·003119 −4·111172 −6·356664 −7·731835 39·922482

0·000000 0·595972 −1·590689 −1·119188 −1·983047 8·759728
Ucf = 0·000000 0·013940 0·747083 −1·065033 −0·419586 3·248803

,

0·000000 0·003923 0·031493 0·824762 −0·884682 1·560588
0·000000 0·000108 0·014043 0·050072 0·904371 1·355484

(49)

2·267787 5·975217 10·435494 14·883058 18·949607 −24·004572

0·000000 −9·282804 3·056031 −2·105336 1·465521 1·062884

0·000000 −0·011770 −9·719819 2·812153 −1·934332 −1·353335
Unew =

0·000000 −0·043659 0·131443 −19·697137 5·157328 3·472750
.

0·000000 0·009925 −0·125682 0·313478 −20·061953 −4·817372

0·000000 −0·005877 0·053944 −0·294990 0·609829 29·794938

(50)

The first column and row correspond to the rigid-body rotation. As can be seen from
the above, the eigenvectors obtained by the clamped–free mode approximation depend
heavily on the first assumed mode. On the other hand, the new set of assumed modes
results in the diagonally dominant eigenvector matrix, which implies that new assumed
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Figure 6. Tip displacement via clamped–free modes.

modes are closer to real mode shapes. Based on the above eigenvectors, the fourth and
fifth mode shapes are plotted in Figures 4 and 5, from which it can be seen that the
cantilever mode approximation suffers in the higher modes.

As a second numerical example, bang–bang torque is applied to the root of the beam.

t= 8 1
−1

0

0E tE 2
2Q tE 4
tq 4

.
(51)

The state equation, equation (43), is discretized with the sampling period of 0·01 s.
Figures 6 and 7 show the time-history of the tip displacements by the cantilever modes
and by the new admissible functions. It becomes evident that the new admissible functions
give better simulation performance.

6. SUMMARY AND CONCLUSIONS

This paper is concerned with the modelling of a slewing beam by means of the assumed
mode method. Interest lies in choosing proper assumed modes for better dynamic
characteristics. It is generally known that discretization by any set of admissible functions
is sufficient, provided that the set of functions is complete and a sufficiently large number
of functions is taken. Although eigenfunctions of the non-rotating clamped–free uniform
beam has been widely used as assumed modes for the dynamic analysis of the slewing
beam, the numerical accuracy in the response calculation as well as natural frequencies
and modes has never been pursued. The modelling issue becomes even more critical in
numerical simulation since a large number of assumed modes results in a
large-degree-of-freedom model, resulting in a numerically stiff equation. In this regard, the
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Figure 7. Tip displacement via new admissible functions.

system should be modelled accurately with a small number of assumed modes. To this end,
the new set of admissible functions obtained for a slewing uniform beam is considered in
this paper. The new set of assumed modes predicts natural frequencies and modes
accurately, whereas eigenfunctions of the non-rotating clamped–free uniform beam suffer
in higher modes. Numerical simulation results also show that eigenfunctions of the
non-rotating clamped–free uniform beam suffer in simulating responses of the slewing
beam since it does not field realistic higher modes. On the other hand, the new admissible
functions developed in this paper give stable performance in numerical simulation.
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